

GCE

Mathematics

Advanced GCE

Unit 4723: Core Mathematics 3

Mark Scheme for June 2011

physicsandmathstutor.com

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

1	(i)	Obtain integral of form ke^{2x+1}	M1		any non-zero constant k different from 6;
					using substitution $u = 2x + 1$ to obtain ke^u earns M1 (but answer to be in terms of x)
		Obtain correct $3e^{2x+1}$	A1		or equiv such as $\frac{6}{2}e^{2x+1}$
	(ii)	Obtain integral of form $k_1 \ln(2x+1)$	M1		any non-zero constant k_1 ; allow if brackets absent; $k_1 \ln u$ (after sub'n) earns M1
		Obtain correct $5\ln(2x+1)$	A1		or equiv such as $\frac{10}{2}\ln(2x+1)$; condone brackets rather than modulus signs but brackets or modulus signs must be present (so that $5\ln 2x+1$ earns A0)
		Include $\dots + c$ at least once	B1	5	anywhere in the whole of question 1; this mark available even if no marks awarded for integration
2		Apply one of the transformations correctly			
		to their equation	B1		
		Obtain correct $-3 \ln x + \ln 4$	B1		or equiv
		Show at least one logarithm property	M1		correctly applied to their equation of resulting curve (even if errors have been made earlier)
		Obtain $y = \ln(4x^{-3})$	A1	4	or equiv of required form; $\ln 4x^{-3}$ earns A1; correct answer only earns 4/4; condone absence of $y =$
3	(a)	State $14\sin\alpha\cos\alpha = 3\sin\alpha$	B1		or unsimplified equiv such as
					$7(2\sin\alpha\cos\alpha) = 3\sin\alpha$
		Attempt to find value of $\cos \alpha$	M1	_	by valid process; may be implied
		Obtain $\frac{3}{14}$	A1	3	exact answer required; ignore subsequent work to find angle
	(b)	Attempt use of identity for $\cos 2\beta$	M1		of form $\pm 2\cos^2 \beta \pm 1$; initial use of $\cos^2 \beta - \sin^2 \beta$ needs attempt to express $\sin^2 \beta$ in terms of $\cos^2 \beta$ to earn M1
		Obtain $6\cos^2\beta + 19\cos\beta + 10$	A1		or unsimplified equiv or equiv involving $\sec \beta$
		Attempt solution of 3-term quadratic eqn	M1		for $\cos \beta$ or (after adjustment) for $\sec \beta$
		Use $\sec \beta = \frac{1}{\cos \beta}$ at some stage	M1		or equiv
		Obtain $-\frac{3}{2}$	A1	5	or equiv; and (finally) no other answer

4	(i)	Draw sketch of $y = (x-2)^4$	*B1		touching positive <i>x</i> -axis and extending at least as far as the <i>y</i> -axis; no need for 2 or
		Draw straight line with positive gradient	*B1		16 to be marked; ignore wrong intercepts at least in first quadrant and reaching positive <i>y</i> -axis; assess the two graphs independently of each other
		Indicate two roots	B1	3	AG; dep *B *B and two correct graphs which meet on the y-axis; indicated in words or by marks on sketch
		[SC: Draw sketch of $y = (x-2)^4 - x - 16$ are	nd ind	licat	te the two roots: B1 (i.e. max 1 mark)]
	(ii)	State 0 or $x = 0$	B1	1	not merely for coordinates (0, 16)
	(iii)	Obtain correct first iterate Show correct iteration process	B1 M1		to at least 3 dp; any starting value (>-16) producing at least 3 iterates in all; may be implied by plausible converging values
		Obtain at least 3 correct iterates	A1		allowing recovery after error; iterates given to only 3 d.p. acceptable; values may be rounded or truncated
		Obtain 4.118	A1	4	answer required to exactly 3 dp; A0 here if number of iterates is not enough to justify 4.118; attempt consisting of answer only earns 0/4
		$[0 \rightarrow 4 \rightarrow 4.114743 \rightarrow 4.117769]$	\rightarrow	4.	
		$1 \rightarrow 4.030543 \rightarrow 4.115549 \rightarrow 4.115449 \rightarrow 4.115549 \rightarrow 4.115$			
		$2 \rightarrow 4.059767 \rightarrow 4.116321 \rightarrow$	4.117	781	$1 \rightarrow 4.117850;$
		$3 \rightarrow 4.087798 \rightarrow 4.117060 \rightarrow$	4.117	783	$0 \rightarrow 4.117850;$
		$4 \rightarrow 4.114743 \rightarrow 4.117769 \rightarrow$	4.11	784	$9 \rightarrow 4.117851;$
		$5 \rightarrow 4.140695 \rightarrow 4.118452 \rightarrow$	4.117	786	$7 \rightarrow 4.117851$
				8	

5 Attempt use of product rule

to produce $k_1 x \ln(4x-3) + \frac{k_2 x^2}{4x-3}$ form *M1

Obtain $2x \ln(4x-3)$

A1

Obtain ... $+\frac{4x^2}{4x-3}$

A1 or equiv

Attempt second use of product rule

*M1

Attempt use of quotient (or product) rule

*M1 allow numerator the wrong way round

 $2\ln(4x-3) + \frac{8x}{4x-3} + \frac{8x(4x-3)-16x^2}{(4x-3)^2}$

A1 or equiv

Substitute 2 into attempt at second deriv Obtain $2 \ln 5 + \frac{96}{25}$

dep *M *M *M M1

A1 8 or exact equiv consisting of two terms

8

6 Method 1: (Differentiation; assume value $\frac{10}{3}$; eqn of tangent; through origin)

Differentiate to obtain $k(3x-5)^{-\frac{1}{2}}$

M1 any constant *k*

Obtain $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$

A1 or equiv

Attempt to find equation of tangent at *P*

and attempt to show tangent passing through origin

M1 assuming value $\frac{10}{3}$; or equiv

Obtain $y = \frac{3}{2\sqrt{5}}x$ and confirm that

tangent passes through O

A1 AG; necessary detail needed

<u>Method 2</u>: (Differentiation; equate $\frac{y \text{ change}}{x \text{ change}}$ to deriv; solve for x)

Differentiate to obtain $k(3x-5)^{-\frac{1}{2}}$

M1 any constant *k*

Obtain $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$

A1 or equiv

Equate $\frac{y \text{ change}}{x \text{ change}}$ to deriv and attempt solution M1

Obtain $\frac{\sqrt{3x-5}}{x} = \frac{3}{2}(3x-5)^{-\frac{1}{2}}$ and solve to

obtain $\frac{10}{3}$ only

A1

Method 3: (Differentiation; find x from y = f'(x) x and $y = \sqrt{3x-5}$)

Differentiate to obtain $k(3x-5)^{-\frac{1}{2}}$

M1 any constant k

Obtain $\frac{3}{2}(3x-5)^{-\frac{1}{2}}$

A1 or equiv

State $y = \frac{3}{2}(3x-5)^{-\frac{1}{2}}x$, $y = \sqrt{3x-5}$,

eliminate y and attempt solution

M1 condone this attempt at 'eqn of tangent'

Obtain $\frac{10}{3}$ only

A1

Method 4: (No differentiation; general line through origin to meet curve at one point only)

Eliminate y from equations y = kx and

 $y = \sqrt{3x - 5}$ and attempt formation of

quadratic eqn

M1

Obtain $k^2 x^2 - 3x + 5 = 0$

A1 or equiv

Equate discriminant to zero to find *k*

Obtain $k = \frac{3}{2\sqrt{5}}$ or equiv and confirm $x = \frac{10}{3}$ A1

Method 5: (No differentiation; use coords of *P* to find eqn of *OP*; confirm meets curve once)

Use coordinates $(\frac{10}{3}, \sqrt{5})$ to obtain $y = \frac{3\sqrt{5}}{10}x$

or equiv as equation of OP

B1

Eliminate y from this eqn and eqn of curve

and attempt quadratic eqn

M1 should be $9x^2 - 60x + 100 = 0$ or equiv

Attempt solution or attempt discriminant M1

Confirm $\frac{10}{3}$ only or discriminant = 0

A1

Either:

Integrate to obtain $k(3x-5)^{\frac{3}{2}}$	*M1	any constant k
Obtain correct $\frac{2}{9}(3x-5)^{\frac{3}{2}}$	A1	
Apply limits $\frac{5}{3}$ and $\frac{10}{3}$	M1	dep *M; the right way round
Make sound attempt at triangle area and calculate (triangle area) minus (their area under curve)	M1	or equiv
Obtain $\frac{10}{6}\sqrt{5} - \frac{10}{9}\sqrt{5}$ and hence $\frac{5}{9}\sqrt{5}$	A1 9	or exact equiv involving single term
Or: Arrange to $x = \dots$ and integrate to		
obtain $k_1 y^3 + k_2 y$ form	*M1	
Obtain $\frac{1}{9}y^3 + \frac{5}{3}y$	A1	
Apply limits 0 and $\sqrt{5}$ Make sound attempt at triangle area and calculate (their area from integration)	M1	dep *M; the right way round
minus (triangle area)	M1	
Obtain $\frac{20}{9}\sqrt{5} - \frac{5}{3}\sqrt{5}$ and hence $\frac{5}{9}\sqrt{5}$	A1 (9)	or exact equiv involving single term

9

Either: Attempt solution of at least one

linear eq'n of form ax + b = 12

M1

Obtain $\frac{1}{3}$

A2 3 and (finally) no other answer

Or: Attempt solution of 3-term quadratic eq'n obtained by squaring attempt at g(x+2) on LHS and squaring

12 or -12 on RHS

M1

Obtain $\frac{1}{3}$

A2 (3) and (finally) no other answer

(ii) Either: Obtain 3(3x+5)+5 for h B1

Attempt to find inverse function

M1

of function of form ax + b

Obtain $\frac{1}{9}(x-20)$

A1 3 or equiv in terms of x

Or: State or imply g^{-1} is $\frac{1}{3}(x-5)$

Attempt composition of g⁻¹ with g⁻¹

M1

Obtain $\frac{1}{9}(x-5) - \frac{5}{3}$

A1 (3) or more simplified equiv in terms of x

(iii) State $x \le 0$

B2 **2** give B1 for answer x < 0

8

8	(i)	Differentiate to obtain form $ke^{-0.014t}$ Obtain $5.6e^{-0.014t}$ or $-5.6e^{-0.014t}$ Obtain 4.9 or -4.9 or 4.87 or -4.87	M1 A1 A1	3	any constant <i>k</i> different from 400 or (unsimplified) equiv but not greater accuracy; allow if final statement seems contradictory; answer only earns 0/3 – differentiation is needed
((ii)	Either: State or imply $M_2 = 75e^{kt}$ Attempt to find formula for M_2	B1 M1		or equiv
		Obtain $M_2 = 75e^{0.047t}$ Equate masses and attempt	A1		or equiv such as $75e^{(\frac{1}{10}\ln{\frac{8}{5}})t}$
		rearrangement	M1		as far as equation with e appearing once
		Obtain $e^{0.061t} = \frac{16}{3}$	A 1	5	or equiv of required form which might
					involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii
		Or: State or imply $M_2 = 75 \times r^{0.1t}$	B1		for positive value r
		Obtain $75 \times 1.6^{0.1t}$	В1		
		Attempt to find M_2 in terms of e	M1		
		Equate masses and attempt			
		rearrangement	M1		
		Obtain $e^{0.061t} = \frac{16}{3}$	A1	5	or equiv of required form which might involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii
(1	 iii)	Attempt solution involving logarithm	 M1		
		of any equation of form $e^{mt} = c_1$ Obtain 27.4	M1 A1	2	whether the conclusion of part ii or not or greater accuracy 27.4422; correct answer only earns both marks

9	(i)	Use at least one identity correctly Attempt use of relevant identities in	B1		angle-sum or angle-difference identity
		single rational expression	M1		not earned if identities used in expression where step equiv to $\frac{A+B+C}{D+E+F} = \frac{A}{D} + \frac{B}{E} + \frac{C}{F} \text{ or similar has}$ been carried out; condone (for M1A1) if signs of identities apparently switched (so that, for example, denominator appears as $\cos\theta\cos\alpha - \sin\theta\sin\alpha + 3\cos\theta + \cos\theta\cos\alpha + \sin\theta\sin\alpha$)
		Obtain $\frac{2\sin\theta\cos\alpha + 3\sin\theta}{2\cos\theta\cos\alpha + 3\cos\theta}$	A1		or equiv but with the other two terms from
		Attempt factorisation of num'r and den'r	M1		each of num'r and den'r absent
		Obtain $\frac{\sin \theta}{\cos \theta}$ and hence $\tan \theta$	A1	5	AG; necessary detail needed
	(ii)	State or imply form $k \tan 150^{\circ}$	M1		obtained without any wrong method seen
		State or imply $\frac{4}{3} \tan 150^{\circ}$	A1		or equiv such as $\frac{12\sin 150^{\circ}}{9\cos 150^{\circ}}$
		Obtain $-\frac{4}{9}\sqrt{3}$	A1	3	or exact equiv (such as $-\frac{4}{3\sqrt{3}}$); correct
					answer only earns 3/3
	(iii)	State or imply $\tan 6\theta = k$	B1		
		State $\frac{1}{6} \tan^{-1} k$	B1		
		Attempt second value of θ	M1		using $6\theta = \tan^{-1} k + \text{(multiple of 180)}$
		Obtain $\frac{1}{6} \tan^{-1} k + 30^{\circ}$	A1	4	and no other value
				12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

