GCE

Mathematics

Advanced GCE

Unit 4723: Core Mathematics 3

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i) Obtain integral of form $\mathrm{ke}^{2 \mathrm{x}+1}$

Obtain correct $3 \mathrm{e}^{2 x+1}$
(ii) Obtain integral of form $k_{1} \ln (2 x+1)$

Obtain correct $5 \ln (2 x+1)$

Include $\ldots+c$ at least once

M1 any non-zero constant k different from 6; using substitution $u=2 x+1$ to obtain ke^{u} earns M1 (but answer to be in terms of x) or equiv such as $\frac{6}{2} \mathrm{e}^{2 x+1}$
any non-zero constant k_{1}; allow if brackets absent; $k_{1} \ln u$ (after sub’n) earns M1
A1 or equiv such as $\frac{10}{2} \ln (2 x+1)$; condone brackets rather than modulus signs but brackets or modulus signs must be present (so that $5 \ln 2 x+1$ earns A0)
B1 5 anywhere in the whole of question 1 ; this mark available even if no marks awarded for integration

5

2 Apply one of the transformations correctly
to their equation
Obtain correct $-3 \ln x+\ln 4$
Show at least one logarithm property

Obtain $y=\ln \left(4 x^{-3}\right)$

B1
B1 or equiv
M1 correctly applied to their equation of resulting curve (even if errors have been made earlier)
A1 4 or equiv of required form; $\ln 4 x^{-3}$ earns A1; correct answer only earns $4 / 4$; condone absence of $y=$

4

3 (a) State $14 \sin \alpha \cos \alpha=3 \sin \alpha$

Attempt to find value of $\cos \alpha$
Obtain $\frac{3}{14}$

B1 or unsimplified equiv such as $7(2 \sin \alpha \cos \alpha)=3 \sin \alpha$
by valid process; may be implied
A1 3 exact answer required; ignore subsequent work to find angle

M1 of form $\pm 2 \cos ^{2} \beta \pm 1$; initial use of $\cos ^{2} \beta-\sin ^{2} \beta$ needs attempt to express $\sin ^{2} \beta$ in terms of $\cos ^{2} \beta$ to earn M1
Obtain $6 \cos ^{2} \beta+19 \cos \beta+10$
A1 or unsimplified equiv or equiv involving $\sec \beta$
for $\cos \beta$ or (after adjustment) for $\sec \beta$
Attempt solution of 3-term quadratic eqn
M1
M1 or equiv
A1 5 or equiv; and (finally) no other answer
8

4 (i) Draw sketch of $y=(x-2)^{4}$

Draw straight line with positive gradient

Indicate two roots
*B1 touching positive x-axis and extending at least as far as the y-axis; no need for 2 or 16 to be marked; ignore wrong intercepts
*B1 at least in first quadrant and reaching positive y-axis; assess the two graphs independently of each other
B1 3 AG ; dep *B *B and two correct graphs which meet on the y-axis; indicated in words or by marks on sketch
[SC: Draw sketch of $y=(x-2)^{4}-x-16$ and indicate the two roots : B1 (i.e. max 1 mark)]
(ii) State 0 or $x=0$
(iii) Obtain correct first iterate

Show correct iteration process
Obtain at least 3 correct iterates

Obtain 4.118
B1 $\mathbf{1}$ not merely for coordinates $(0,16)$
B1 to at least 3 dp ; any starting value (>-16)
M1 producing at least 3 iterates in all; may be implied by plausible converging values
A1 allowing recovery after error; iterates given to only 3 d.p. acceptable; values may be rounded or truncated
A1 4 answer required to exactly 3 dp ; A0 here if number of iterates is not enough to justify 4.118; attempt consisting of answer only earns 0/4
$[0 \rightarrow 4 \rightarrow 4.114743 \rightarrow 4.117769 \rightarrow 4.117849$;
$1 \rightarrow 4.030543 \rightarrow 4.115549 \rightarrow 4.117790 \rightarrow 4.117849$;
$2 \rightarrow 4.059767 \rightarrow 4.116321 \rightarrow 4.117811 \rightarrow 4.117850 ;$
$3 \rightarrow 4.087798 \rightarrow 4.117060 \rightarrow 4.117830 \rightarrow 4.117850 ;$
$4 \rightarrow 4.114743 \rightarrow 4.117769 \rightarrow 4.117849 \rightarrow 4.117851$;
$5 \rightarrow 4.140695 \rightarrow 4.118452 \rightarrow 4.117867 \rightarrow 4.117851]$
$5 \quad$ Attempt use of product rule
Obtain $2 x \ln (4 x-3)$
Obtain $\ldots+\frac{4 x^{2}}{4 x-3}$
Attempt second use of product rule
Attempt use of quotient (or product) rule Obtain

$$
2 \ln (4 x-3)+\frac{8 x}{4 x-3}+\frac{8 x(4 x-3)-16 x^{2}}{(4 x-3)^{2}}
$$

Substitute 2 into attempt at second deriv
Obtain $2 \ln 5+\frac{96}{25}$
*M1 to produce $k_{1} x \ln (4 x-3)+\frac{k_{2} x^{2}}{4 x-3}$ form
A1
A1 or equiv
*M1
*M1 allow numerator the wrong way round

A1 or equiv
M1 dep *M *M *M
A1 $\mathbf{8}$ or exact equiv consisting of two terms

6 Method 1: (Differentiation; assume value $\frac{10}{3}$; eqn of tangent; through origin)
Differentiate to obtain $k(3 x-5)^{-\frac{1}{2}} \quad$ M1 any constant k
Obtain $\frac{3}{2}(3 x-5)^{-\frac{1}{2}}$
A1 or equiv
Attempt to find equation of tangent at P
and attempt to show tangent passing through origin

M1 assuming value $\frac{10}{3}$; or equiv
Obtain $y=\frac{3}{2 \sqrt{5}} x$ and confirm that tangent passes through O

A1 AG; necessary detail needed
Method 2: (Differentiation; equate $\frac{y \text { change }}{x \text { change }}$ to deriv; solve for x)
Differentiate to obtain $k(3 x-5)^{-\frac{1}{2}} \quad$ M1 any constant k
Obtain $\frac{3}{2}(3 x-5)^{-\frac{1}{2}}$
A1 or equiv
Equate $\frac{y \text { change }}{x \text { change }}$ to deriv and attempt solution M1
Obtain $\frac{\sqrt{3 x-5}}{x}=\frac{3}{2}(3 x-5)^{-\frac{1}{2}}$ and solve to
obtain $\frac{10}{3}$ only
A1

Method 3: (Differentiation; find x from $y=\mathrm{f}^{\prime}(x) x$ and $y=\sqrt{3 x-5}$)

Differentiate to obtain $k(3 x-5)^{-\frac{1}{2}}$
Obtain $\frac{3}{2}(3 x-5)^{-\frac{1}{2}}$
M1 any constant k

State $y=\frac{3}{2}(3 x-5)^{-\frac{1}{2}} x, y=\sqrt{3 x-5}$,
eliminate y and attempt solution
condone this attempt at 'eqn of tangent'

Obtain $\frac{10}{3}$ only A1

Method 4: (No differentiation; general line through origin to meet curve at one point only)
Eliminate y from equations $y=k x$ and
$y=\sqrt{3 x-5}$ and attempt formation of
quadratic eqn

Obtain $k^{2} x^{2}-3 x+5=0 \quad$ A1 or equiv
Equate discriminant to zero to find k M1
Obtain $k=\frac{3}{2 \sqrt{5}}$ or equiv and confirm $x=\frac{10}{3}$ A1

Method 5: (No differentiation; use coords of P to find eqn of $O P$; confirm meets curve once)
Use coordinates $\left(\frac{10}{3}, \sqrt{5}\right)$ to obtain $y=\frac{3 \sqrt{5}}{10} x$ or equiv as equation of $O P \quad B 1$
Eliminate y from this eqn and eqn of curve and attempt quadratic eqn M1
Attempt solution or attempt discriminant M1
Confirm $\frac{10}{3}$ only or discriminant $=0$
A1

Either:

Integrate to obtain $k(3 x-5)^{\frac{3}{2}}$
Obtain correct $\frac{2}{9}(3 x-5)^{\frac{3}{2}}$
Apply limits $\frac{5}{3}$ and $\frac{10}{3}$
Make sound attempt at triangle area and calculate (triangle area) minus (their area under curve)
Obtain $\frac{10}{6} \sqrt{5}-\frac{10}{9} \sqrt{5}$ and hence $\frac{5}{9} \sqrt{5}$
Or:
Arrange to $x=\ldots$ and integrate to
obtain $k_{1} y^{3}+k_{2} y$ form $\quad * \mathrm{M} 1$
Obtain $\frac{1}{9} y^{3}+\frac{5}{3} y$
Apply limits 0 and $\sqrt{5}$
Make sound attempt at triangle area and
calculate (their area from integration)
minus (triangle area)
Obtain $\frac{20}{9} \sqrt{5}-\frac{5}{3} \sqrt{5}$ and hence $\frac{5}{9} \sqrt{5}$
A1

M1
*M1 any constant k
A1
M1 dep ${ }^{*} \mathrm{M}$; the right way round

M1 or equiv
A1 $\mathbf{9}$ or exact equiv involving single term

M1 dep *M; the right way round

A1 (9) or exact equiv involving single term

9

7 (i) Either: Attempt solution of at least one
linear eq'n of form $a x+b=12$
Obtain $\frac{1}{3}$
Or: Attempt solution of 3-term quadratic eq'n obtained by squaring attempt at $\mathrm{g}(x+2)$ on LHS and squaring 12 or -12 on RHS
Obtain $\frac{1}{3}$

A2 3 and (finally) no other answer

8 (i) Differentiate to obtain form $k \mathrm{e}^{-0.014 t}$
Obtain $5.6 \mathrm{e}^{-0.014 t}$ or $-5.6 \mathrm{e}^{-0.014 t}$
Obtain 4.9 or -4.9 or 4.87 or -4.87

M1 any constant k different from 400
A1 or (unsimplified) equiv
A1 3 but not greater accuracy; allow if final statement seems contradictory; answer only earns $0 / 3$ - differentiation is needed
(ii) Either: State or imply $M_{2}=75 \mathrm{e}^{k t}$

Attempt to find formula for M_{2}
Obtain $M_{2}=75 \mathrm{e}^{0.047 t}$
Equate masses and attempt rearrangement
Obtain $\mathrm{e}^{0.061 t}=\frac{16}{3}$

Or: State or imply $M_{2}=75 \times r^{0.1 t}$
Obtain $75 \times 1.6^{0.1 t}$
Attempt to find M_{2} in terms of e
Equate masses and attempt rearrangement
Obtain $\mathrm{e}^{0.061 t}=\frac{16}{3}$

B1 or equiv
M1
A1 or equiv such as $75 \mathrm{e}^{\left(\frac{1}{10} \ln \frac{8}{5}\right) t}$
M1 as far as equation with e appearing once
A1 5 or equiv of required form which might involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii
B1 for positive value r

M1

M1
A1 5 or equiv of required form which might involve 5.33 or greater accuracy on RHS; final two marks might be earned in part iii
(iii) Attempt solution involving logarithm
of any equation of form $\mathrm{e}^{m t}=c_{1}$
Obtain 27.4

M1 whether the conclusion of part ii or not
A1 2 or greater accuracy 27.4422...; correct answer only earns both marks

9 (i) Use at least one identity correctly Attempt use of relevant identities in single rational expression

Obtain $\frac{2 \sin \theta \cos \alpha+3 \sin \theta}{2 \cos \theta \cos \alpha+3 \cos \theta}$

Attempt factorisation of num'r and den'r
Obtain $\frac{\sin \theta}{\cos \theta}$ and hence $\tan \theta$
(ii) State or imply form $k \tan 150^{\circ}$

State or imply $\frac{4}{3} \tan 150^{\circ}$
Obtain $-\frac{4}{9} \sqrt{3}$

B1 angle-sum or angle-difference identity
M1 not earned if identities used in expression where step equiv to
$\frac{A+B+C}{D+E+F}=\frac{A}{D}+\frac{B}{E}+\frac{C}{F}$ or similar has been carried out; condone (for M1A1) if signs of identities apparently switched (so that, for example, denominator appears as $\cos \theta \cos \alpha-\sin \theta \sin \alpha+$ $3 \cos \theta+\cos \theta \cos \alpha+\sin \theta \sin \alpha)$

A1 or equiv but with the other two terms from each of num'r and den'r absent

A1 5 AG; necessary detail needed

M1 obtained without any wrong method seen A1 or equiv such as $\frac{12 \sin 150^{\circ}}{9 \cos 150^{\circ}}$
A1 3 or exact equiv (such as $-\frac{4}{3 \sqrt{3}}$); correct answer only earns $3 / 3$
(iii) State or imply $\tan 6 \theta=k$

State $\frac{1}{6} \tan ^{-1} k$
Attempt second value of θ
Obtain $\frac{1}{6} \tan ^{-1} k+30^{\circ}$

B1
B1
M1 using $6 \theta=\tan ^{-1} k+$ (multiple of 180)
A1 4 and no other value 12

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

